
23rd ITS World Congress, Melbourne, Australia, 10–14 October 2016

Paper number EU-TP0220

Open source big data landscape and possible ITS applications

Adam Warski1*, Tomasz Szymański2

1. SoftwareMill, Poland. Address: ul. Na Uboczu 8/87, 02-791 Warszawa, Poland; tel.: +48 660 703

691, e-mail adam.warski@sofwaremill.com

2. SoftwareMill, Poland

Abstract
Big data is taking the world by storm, and the ITS industry is becoming one of the key players
as the users, vehicles, and the road infrastructure are becoming rich data producers and
consumers. In our paper, we describe the freely available open-source big data tools that can
be used for data ingestion, analysis, and storage, such as Apache Hadoop, Spark, Kafka, and
Cassandra. They are already widely used in IT, and ITS can certainly leverage the existing
work. We also differentiate between big data and fast data solutions, when the amount of data
is not huge, but must be processed in near real-time. A common data gathering and processing
architecture is shown, together with possible applications in the ITS domain, when the data is
gathered from users, vehicles or transport infrastructure.

Keywords:
Big data, Open-source, Data science

Introduction

As both the vehicles and the transportation infrastructure become more intelligent, they
produce an ever-increasing amount of data just waiting to be used. The same is true for
transport users: almost everybody is now equipped with a powerful, portable mobile computer
(smartphone), capable of reporting multiple metrics in real-time over the Internet. The ITS
industry is definitely not the only one where this is true – it is a general trend, the “big data
revolution,” which is taking the world by storm. This would not be possible without huge
technical support; hence, a number of tools are being developed for data influx, storage,
analysis, and visualization.

Open source big data landscape and possible ITS applications

2

Many of these big data tools are open-source, meaning their source code is freely available
and they can be used in a commercial setting free of charge. Such open-source projects often
have large user and developer communities, with a lot of learning materials available. In some
cases, the tools are gaining so much popularity that they become a de facto standard in their
area of use. Apart from community and developer support, there are also options for
commercial support if need be.

In our paper, we would like to first define what big data is and what kinds of resources are
required to process it, depending on the actual amount of information available. Then we
would like to present a couple of the most popular open-source big data tools and typical
deployment architectures, with examples of how they can be leveraged in ITS.

Big data & fast data

The term big data is often overused in situations where the data can be in fact processed on a
single computer. That is why the term fast data was introduced to emphasize the fact that
there is a shift from analyzing data offline in huge batches, to analyzing data in real-time as it
comes (often in the form of micro-batches) and making decisions based on the current stream
of information. In total, the amount of data can be huge, and can still be processed offline, e.g.,
daily, but at any given time, the amount of data coming into the system is much smaller and
can be managed in a simpler IT setup.

Of course, it is also possible to have a combination of both: when we want to analyze a stream
of data, arriving in amounts exceeding the processing capabilities of a single machine. Until
recently, the support for such scenarios was very limited. However, the domain of data stream
processing systems is evolving very rapidly, making it possible to build solutions that analyze
data streams from thousands of users or devices in near real-time.

There is no precise definition of big data, but anything above 100s of gigabytes can be
considered such. If your data is smaller than that, you can still leverage the many advances in
open-source machine learning, data analysis, and visualization, without the need to invest in
costly server clusters. Very often, a simple setup of a couple of commodity servers can handle
such loads.

Fast data tools

For the medium/small data case, there are a number of tools available that you can leverage to
process the data using your machine’s resources to the maximum. Single-server setups are not
only much simpler in setup and management; they also have the possibility to get a global

Open source big data landscape and possible ITS applications

3

view of data at any time, something that is not always available (or at least costly) in
multi-node setups. An increasingly popular architecture is modeling systems in a reactive way
[1], which automatically adjusts the various stages of your data processing pipeline, so that no
component is flooded with data, which prevents, e.g., out of memory errors. This technique is
called backpressure.

Some tools worth mentioning here are definitely the many stream processing libraries, such as
Akka Streams [2] or ReactiveX [3]. These libraries, first of all, provide a concise,
developer-friendly programming interface for defining where data should be read from, how
it should be transformed and analyzed and where it should be sent next. Secondly, they have
advanced mechanisms for fault-tolerance and managing system resources (also in the form of
the already mentioned backpressure) so that developers can focus on the problem at hand
instead of low-level programming details.

Big data tools: processing

If your data comes in terabytes, then you will most certainly need to spread the computation
across a cluster of machines. The first open-source big data tool that needs to be mentioned
here is Hadoop [4]. It allows the processing of data in batches, mostly offline. Its main
strength is scalability, as its data processing capabilities are only bound by the number of
servers. Its main weakness is that data is typically processed in large intervals, for example,
overnight, or even once every week or so. While still useful in many situations, it is often
necessary to analyze the data faster.

That is where Apache Spark [5] comes into play. Spark is an increasingly popular platform
for large-scale data processing, outperforming Hadoop by orders of magnitude in many tasks,
and offering capabilities not available to Hadoop clusters. That is achieved by relying on
in-memory computations, making use of the vast amounts of RAM computers are equipped
with, as well as a more modern computational model.

Apart from traditional batch computations, Apache Spark also offers other components
crucial to modern big/fast-data application development. The first is Spark Streaming, which
makes it possible to process data in near real-time, using micro-batching. With this technique,
if the incoming amounts of data are huge, the power of the whole cluster is used; with the
cluster still being able to serve queries related to the data almost immediately after it enters
the system.

The second is Spark ML, a library for scalable machine learning. It has built-in support for
computing basic and advanced data statistics, classification, clustering, recommendations

Open source big data landscape and possible ITS applications

4

(collaborative filtering), as well as initial support for solving optimization problems, which
are very common in the transportation industry.

Both Spark and Hadoop offer SQL connectors and interfaces, as well as support for languages
such as Scala, Python or R, making it possible for data scientists to leverage their existing
knowledge easily to scale their solutions from small to big data.

Spark and Hadoop can also be combined in a single system using the so-called lambda
architecture [6]. In this setup, there are two layers: the batch layer and the speed layer. The
batch layer stores all incoming information, and then processes data in large batches (e.g.,
using Hadoop). Once the data is processed, the system is able to respond to queries using the
entire information available. However, there is a huge latency as to when these precise queries
can be answered. The speed layer processes data in real-time and is often able to give only
approximate answers to queries – however, with very low latency. In the speed layer, tools
such as Apache Spark or Apache Storm [7] are often used. For data ingestion and buffering,
the previously discussed Apache Kafka messaging platform is a popular choice.

Big data tools: ingestion & storage

Data processing components are only one piece of the puzzle. As data comes into a system, it
needs to be properly buffered: you cannot always control the rate at which information flows
in the system. For example, in the morning rush hours, you’ll probably receive much more
data than during the day. We do not want, of course, for the system to break when there is a
sudden spike of data. Ideally, the system should scale itself (which is possible to achieve, e.g.,
using Mesos [8]), but if that is not available, it should at least react to the increased load and
process the data at a rate that will not overwhelm it. Still, we do not want to lose data, hence
the need for a buffering component. A popular solution here is to use Apache Kafka [9]: a
high-throughput distributed messaging system (which is the backbone of many well-known
internet services, such as LinkedIn). Due to its reliability and performance, it often serves as
“first-contact” data ingestion platform, which then feeds other systems.

When data ingestion and analysis is solved, we still need a way to store the data reliably. Here
various NoSQL systems are very popular, since they often offer great scalability features,
making it possible to store more data just by adding servers. Two notable systems are Apache
Cassandra [10] and Riak [11]. Both are great platforms for storing vast amounts of data,
coming either from Hadoop processing, Spark streaming processing or directly from Kafka.

Open source big data landscape and possible ITS applications

5

Possible ITS applications

Possible applications of the above technologies in the ITS industry come to mind almost
spontaneously. There are a lot of devices, and even more are coming, which can be installed
in vehicles, be it cars, buses, tracks or trains, which can transmit various data: from vehicle
telemetry, through current location and speed, to weather conditions or even recognized
infrastructure elements or geographical features. It is possible using the described open-source
tools to build a reliable analytical system that can scale itself during the morning rush hours,
when the vehicle utilization is at its highest, down to the night hours when the roads are
empty. The system could send the data both for real-time analysis, to predict traffic jams
depending on the weather or specific road congestion, as well as to a batch-processing
component, which could take a global view on data to detect less obvious patterns in how
infrastructure is used and how it can be improved. The processed data can then be stored
reliably and served back to the user’s devices to aid them in their everyday journeys.

ITS applications 1: detecting destination hot spots in New York taxi data

One of the data sources that are made openly available by New York City are all taxi trips
from past years, both for the Yellow Taxi and Green Taxi systems [12]. Yellow taxis operate
mostly in Manhattan, while Green taxis are only allowed to pick up passengers from other
boroughs and drop them off anywhere.

Here we will show how to rapidly build a system to detect taxi drop-off hotspots. We will
define a hotspot as an area to which many more passengers traveled than to neighboring areas
in a given window of time. The concrete parameters that we used in our tests are:

• 500m x 500m areas, spaced by 100m
• An area needs to have 2.5x more passengers than neighboring areas to be considered a

hotspot
• We are looking at all drop-offs within 30-minute windows, spaced by 5 minutes

It is quite possible that using other settings the results would be quite different, but we leave
potential experiments up to the reader.

The algorithm to compute the hotspots is quite straightforward. First, we parse the .csv files
available from New York City’s website. For each month, there are about 1.6 million data
points for green taxis and 12 million data points for yellow taxis. Using our definitions, that is
not yet big data, and we should easily be able to process this on a single machine. Still, we
might create a “fast data” solution, using high-level constructs, and thus speeding up
development, and allowing us to do online, streaming analytics.

Open source big data landscape and possible ITS applications

6

The data needs to be cleaned as sometimes it contains invalid pickup or drop-off points (in the
middle of the ocean). After that is done, each trip is assigned to all areas that it belongs to
(using our parameters each trip is assigned to (500/100)^2 = 25 areas), and to each window
(again using our parameters that is 30/5 = 6 windows). These operations multiply the data by
a factor of 150, but that still should not be a problem for the tools that we have chosen. Once a
trip, assigned to a specific area, is added to a window the counter for that area is incremented.

Once all trips for a given window are taken into account (we know this using wall-clock or
trip drop-off time), we can “close” the window and find potential hotspots. To do that we scan
all area counters looking for one that has many more hits than the eight neighboring areas.

In our tests, we have created two implementations: one using Akka Streams [2] and one using
Apache Flink [13]. The code is available on Github [14]. While the Akka version can only be
run locally, Flink offers the potential to distribute the computation across the cluster, without
any code changes. This was not necessary for this data set, but the same code can be thus
reused for much bigger inputs.

Both libraries offer similar combinators to manipulate the data and provide a clear,
analyst-friendly API. Looking at the code, it is quite clear what transformations happen and
why. Also, thanks to the backpressure support both in Akka Streams and Flink, the
computation has bounds on the memory it consumes, making sure no out-of-memory errors
occur.

An important feature of the Flink code to note is that it contains only declarative
specifications on how to manipulate data; there are no low-level processing details, especially
dealing with concurrency. The same code can process data using a single thread, on multiple
cores on a single machine as well as deployed on a Flink cluster and run on multiple machines.
This makes it possible to scale our data pipeline as the amount of data increases.

What are the results of computing the hotspots (see Figure 1 below)? Some are quite obvious:
a constant hotspot is, for example, New York’s Penn station (this is, in fact, the most popular
hotspot, most of the time receiving over 3x more passengers than neighboring areas), Battery
Park/South Ferry transport hub, and the World Trade Center region. In the map below, you
can also see some hotspots in La Guardia Airport - these are mostly before Thanksgiving
when a statistically significant number of people were traveling. One interesting example is a
one-time hotspot on W 90st St near Central Park, on the 17th of November, early in the
morning (7:40am). Some event must have been held there which attracted a much-elevated
number of passengers.

Open source big data landscape and possible ITS applications

7

Figure 1. Example hotspot analysis output for November 2015, New York Yellow taxis

ITS applications 2: architecture of speed data analysis system

To see how these tools could be used in a more concrete ITS system, we will examine how a
system for analyzing the speed of vehicles and detecting traffic jams could be architected.
First, of course, we need a source of data. In a traditional setting, this would come from
vehicle detectors built into the roads, or roadside sensors or cameras. However, a much better
source of data nowadays is coming from either devices installed in the vehicles or the mobile
phones of transports users. These devices are capable of sending various types of data in
real-time; here we are interested in the current GPS position, speed, plus possibly
accelerometer and magnetometer indications to make the positioning more precise.

The data is sent over the Internet, through mobile connections. As these are not always
available, the device or mobile application has to sometimes buffer the data until a connection
is available, and the backend system must allow for data arriving late.

The first component our system needs are endpoints for receiving data. Their main role is to
accept connections from thousands of concurrent users and forward for further processing.

Open source big data landscape and possible ITS applications

8

They do not store any state for themselves, but they need to be highly available and scalable –
after all, it is quite important that the system can receive data. To dynamically start and stop
the data-receiving endpoints (as demand grows or shrinks) we might use the already
mentioned Apache Mesos [8], which governs the infrastructure. The endpoints (API servers)
also need to handle backpressure, in order not to overwhelm any single node; it is always
better to reject new connections than to accept too much, and bring even a single node to a
halt.

Figure 2. Common data processing architecture applied to ITS

High availability, scalability, backpressure are all traits of a reactive system. To implement
the endpoints, we could use technologies such as the Play Framework [15] or Akka HTTP [2]
combined with Akka Streams. These components are shown in Figure 1 as API servers:
receiving (and also sending) data back to the system users.

Each raw received message (consisting at least of a vehicle id, current GPS position, speed,
acceleration, and timestamp) needs to be persistently stored for further online and offline
analysis. Here, a very safe bet is to use Apache Kafka [9], which is a clustered, scalable
message broker, designed from the ground up for streaming use-cases. In Apache Kafka, data

Open source big data landscape and possible ITS applications

9

is partitioned among a number of servers for scalability, and then replicated on multiple
servers for reliability. However, we must be aware that old data is purged from Kafka; that is
we cannot use it for historical data storage. All systems, which further analyze the data, will
rely on the content coming in from Kafka.

To detect traffic jams and analyze congestion on roads, we first need to group data coming
from individual vehicles into road segments (where each segment is, e.g., a stretch of road
between two intersections, or a stretch of road of a given length). Here we have many
possibilities. One of them is using another Kafka feature, Kafka Streams [16]. Kafka Streams
is a library, which makes it easy to transform, join, and aggregate data already present in
Kafka, writing it back to a Kafka topic as well. In our case, we need to first assign a road
segment to each data point, as well as some form of a speed index (for example, slow -
medium - fast). Then we can group the readings into intervals of 5, 10 and 15 minutes using
Kafka Stream’s windowing features, and emit that to yet another stream stored in Kafka. In
each window, the speed of the vehicles has to be somehow averaged, for example by
computing the average, median, standard deviation or a percentile to get a good overall
measure. All of this can be done using high-level, developer friendly programming interfaces.

Having such transformed data, we can feed the road-segment and speed-index pairs to Spark
and use Spark Streaming to detect traffic jams at scale. To do that, we need to find
consecutive road segments that are “slow.” We could also use an online machine-learning
model to analyze the live traffic data and predict where traffic jams might form using Spark
ML and warn users.

The raw Kafka data stream, as well as the data transformed by Kafka and Spark, can then be
written to a database. Here, Apache Cassandra is often a good choice. It provides high data
durability as the data is replicated and very good scalability - the total storage capacity and
read/write throughput scales linearly with the number of nodes. Now we can serve data back
to the clients, showing them the current (and predicted) traffic jams in their area, using similar
endpoints as described in the beginning for receiving data.

We can also batch-analyze the data offline using Apache Hadoop [4] to detect traffic patterns,
for example, we can analyze how traffic jams originate (this can be done by constructing a
graph of connected, slow road segments and traversing them in time), or how traffic jams
move. Using an offline machine-learning model, such a system can suggest adjustments to
how traffic lights should be regulated, where to widen/build new roads, or give hints on how
to improve the public transport network.

Open source big data landscape and possible ITS applications

10

Open-source tools, open data?
There are a lot of open-source big- & fast-data tools available, but what about data itself?
That is usually where the value of the many fast-growing companies lies. However, there are
increasing movements in opening access to data as well. Prominent examples here are
Copenhagen [17] and New York City [18]; the latter makes a number of data sets publicly
available, such as subway system turnstile statistics, detailed information on taxi trips or
violations of speed cameras spread across the city. This makes it possible both for enthusiasts
to analyze and correlate the data in ways interesting, e.g., to public transport planners, but also
for businesses to make informed development decisions. As the city owns the transport
infrastructure, it is logical that it makes infrastructure usage data available for free to aid its
further development.

Many cities are following suit - however, the amount of data is still quite limited, and almost
all of the open data available is historical, suitable for offline analysis and processing. One
development we might see in the coming years is the availability of live, streaming open data.
The technology barriers are disappearing; it is very often a matter of investment from the
cities. Some live data feeds that might be made open are, for example, live feeds of subway
cars, buses, and taxis positions, or the feeds coming from sensors installed at intersections.

However, the biggest source of open data might be transport users via their mobile phones.
Just as you track your fitness activities, why not track (in an anonymized, secure way) how
you use public and private transport? Which routes you take, how fast you go, this can all be
put to great benefits to city planners. A simple mobile application, which sends current speed
& position, activated whenever you enter your car, could be provided by the city, for the
city’s benefit.

About SoftwareMill

SoftwareMill [19] is a software house with a diverse portfolio of customers, from a variety of
industries: transportation, logistics, communication, banking, energy, and entertainment. This
has allowed us to gain first-hand experience developing a wide range of systems, including
various big-data and fast-data processing projects. We think that it would be very valuable to
share our experiences. We believe that by combining our technical big data knowledge with
ITS domain experts, we could unleash a huge potential in developing next-generation
data-driven applications.

Our company is a Select Consulting Partner of Lightbend [20], which develops the Lightbend
Reactive Platform, a set of programming languages (such as Scala) and tools for building high
performance, resilient, elastic, and message-driven applications. We are also consulting

Open source big data landscape and possible ITS applications

11

partners of Confluent [21], the company behind Apache Kafka, as well as of Datastax [22],
the company developing Apache Cassandra; a number of our developers are certified
Cassandra architects. SoftwareMill, Lightbend, Confluent, and Datastax cooperate to deliver
top-notch consultancy and development services in various areas, including big data
development.

References

1. The Reactive Manifesto, http://www.reactivemanifesto.org

2. Akka Streams, http://akka.io/docs/

3. ReactiveX, http://reactivex.io/

4. Apache Hadoop, http://hadoop.apache.org

5. Apache Spark, http://spark.apache.org

6. The Lambda Architecture, http://lambda-architecture.net

7. Apache Storm, http://storm.apache.org

8. Apache Mesos, http://mesos.apache.org

9. Apache Kafka, http://kafka.apache.org

10. Apache Cassandra, http://cassandra.apache.org

11. Riak, http://basho.com/products/

12. New York City taxi data, http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

13. Apache Flink, https://flink.apache.org/

14. Source code used for hotspot analysis using Scala, Akka and Apache Flink,
https://github.com/softwaremill/its-pres

15. Play Framework, https://www.playframework.com/

16. An introduction to Kafka Streams from the Confluent blog,
http://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple

17. City of Copenhagen open data, http://data.kk.dk/

18. New York City open data, https://data.ny.gov/

19. SoftwareMill, https://www.softwaremill.com

20. Lightbend, https://www.lightbend.com

21. Confluent, http://www.confluent.io/

22. Datastax, http://www.datastax.com/

